Need help? We're here to assist you!

Book For Free Trial Of Study App & Counselling

Thank You for Enquiry, we will contact you soon!

Close
Home Revise
☰
Home Revise
✖
  • HOME
  • DEMO VIDEOS
  • BOOK A FREE COUNSELLING
  • +91 8080972972
Home Revise
  • HOME
  • DEMO VIDEOS
  • BOOK A FREE COUNSELLING
  • +91 8080972972

NCERT Solutions for Class 8 Maths Chapter 9 – Algebraic Expressions and Identities

Home Revise – NCERT Solutions for Class 8 Maths Chapter 9 – Algebraic Expressions and Identities

The Class 8 is an important year in a student’s life and Maths is one of the subjects that require dedication, hard work, and practice. It’s a subject where you can score well if you are well-versed with the concepts, remember the important formulas and solving methods, and have done an ample amount of practice. Worry not! Home Revise is here to make your Class 8 journey even easier. It’s essential for students to have the right study material and notes to prepare for their board examinations, and through Home Revise, you can cover all the fundamental topics in the subject and the complete NCERT Class 8 Maths Book syllabus.

NCERT Solutions for Class 10 Science CBSE

Access Answers to NCERT Class 8 Maths Chapter 9 – Algebraic Expressions and Identities

Exercise 9.1 Page No: 140

Q1. Identify the terms, their coefficients for each of the following expressions. (i) 5xyz2 – 3zy (ii) 1 + x + x2 (iii) 4x2 y2 – 4x2 y2 z2 + z2 (iv) 3 – pq + qr – p (v) (x/2) + (y/2) – xy (vi) 0.3a – 0.6ab + 0.5b

Solution :

Sl. No. Expression Term Coefficient
i) 5xyz2 – 3zy Term: 5xyz 2

Term: -3zy

5 -3
ii) 1 + x + x2 Term: 1
Term: x
Term: x2
1 1 1
iii) 4x2 y2 – 4x2 y2 z2 + z2 Term: 4 x2 y 2
Term: -4 x2 y 2 z 2
Term :  z 2
4 -4 1
iv) 3 – pq + qr – p Term :  3 -pq qr -p 3 -1 1 -1
v) (x/2) + (y/2) – xy Term :  x/2 Y/2 -xy ½ 1/2 -1
vi) 0.3a – 0.6ab + 0.5b Term :  0.3a -0.6ab 0.5b 0.3 -0.6 0.5

2. Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories? x + y, 1000, x + x2 + x3 + x4 , 7 + y + 5x, 2y – 3y2 , 2y – 3y2 + 4y3 , 5x – 4y + 3xy, 4z – 15z2 , ab + bc + cd + da, pqr, p2 q + pq2 , 2p + 2q

Solution:

Let us first define the classifications of these 3 polynomials:

Monomials contain only one term.

Binomials contain only two terms.

Trinomials contain only three terms.

x + y two terms Binomial
1000 one term Monomial
x + x2 + x3 + x4 four terms Polynomial, and it does not fit in the listed three categories
2y – 3y2 two terms Binomial
2y – 3y2 + 4y 3 three terms Trinomial
5x – 4y + 3xy three terms Trinomial
4z – 15z 2 two terms Binomial
ab + bc + cd + da four terms Polynomial, and it does not fit in the listed three categories
pqr one term Monomial
p2 q + pq2 two terms Binomial
2p + 2q two terms Binomial
7 + y + 5x three terms Trinomial

3.  Add the following.

(i) ab – bc, bc – ca, ca – ab

(ii) a – b + ab, b – c + bc, c – a + ac

(iii) 2p2 q2 – 3pq + 4, 5 + 7pq – 3p2 q2

(iv) l2 + m2 , m2 + n2 , n2 + l2 , 2lm + 2mn + 2nl

Solution:

i) (ab – bc) + (bc – ca) + (ca-ab)

= ab – bc + bc – ca + ca – ab

= ab – ab – bc + bc – ca + ca

= 0

ii) (a – b + ab) + (b – c + bc) + (c – a + ac)

= a – b + ab + b – c + bc + c – a + ac

= a – a +b – b +c – c + ab + bc + ca

= 0 + 0 + 0 + ab + bc + ca

= ab + bc + ca

iii) 2p2 q 2 – 3pq + 4, 5 + 7pq – 3p2 q2

= (2p2 q2 – 3pq + 4) + (5 + 7pq – 3p2 q2 )

= 2p2 q2 – 3p2 q2 – 3pq + 7pq + 4 + 5

= – p2 q2 + 4pq + 9

iv) (l2 + m2 ) + (m2 + n2 ) + (n2 + l2 ) + (2lm + 2mn + 2nl)

= l2 + l2 + m2 + m2 + n2 + n2 + 2lm + 2mn + 2nl

= 2l2 + 2m2 + 2n2 + 2lm + 2mn + 2nl

4. (a) Subtract 4a – 7ab + 3b + 12 from 12a – 9ab + 5b – 3

(b) Subtract 3xy + 5yz – 7zx  from 5xy – 2yz – 2zx + 10xyz

(c) Subtract  4p2 q – 3pq + 5pq2 – 8p + 7q – 10 from  18 – 3p – 11q + 5pq – 2pq2 + 5p2 q

Solution:

(a) (12a – 9ab + 5b – 3) – (4a – 7ab + 3b + 12)

= 12a – 9ab + 5b – 3 – 4a + 7ab – 3b – 12

= 12a – 4a -9ab + 7ab +5b – 3b -3 -12

= 8a – 2ab + 2b – 15

b) (5xy – 2yz – 2zx + 10xyz) – (3xy + 5yz – 7zx)

= 5xy – 2yz – 2zx + 10xyz – 3xy – 5yz + 7zx

=5xy – 3xy – 2yz – 5yz – 2zx + 7zx + 10xyz

= 2xy – 7yz + 5zx + 10xyz

c) (18 – 3p – 11q + 5pq – 2pq2 + 5p2 q) – (4p2 q – 3pq + 5pq2 – 8p + 7q – 10)

= 18 – 3p – 11q + 5pq – 2pq2 + 5p2 q – 4p2 q + 3pq – 5pq2 + 8p – 7q + 10

=18+10 -3p+8p -11q – 7q + 5 pq+ 3pq- 2pq^2 – 5pq^2 + 5 p^2 q – 4p^2 q

= 28 + 5p – 18q + 8pq – 7pq2 + p2 q

Exercise 9.2 Page No: 143

1. Find the product of the following pairs of monomials.

(i) 4, 7p

(ii) – 4p, 7p

(iii) – 4p, 7pq

(iv)  4p3 , – 3p

(v) 4p, 0

Solution:

(i) 4 , 7 p =  4 × 7 × p = 28p

(ii) – 4p × 7p = (-4 × 7 ) × (p × p )= -28p2

(iii) – 4p × 7pq =(-4 × 7 ) (p × pq) =  -28p2 q

(iv) 4p3 × – 3p = (4 × -3 ) (p3 × p ) =  -12p4

(v) 4p ×  0 = 0

2. Find the areas of rectangles with the following pairs of monomials as their lengths and breadths, respectively.

(p, q) ; (10m, 5n) ; (20x2 , 5y2 ) ; (4x, 3x2 ) ; (3mn, 4np)

Solution:

Area of rectangle = Length x breadth. So, it is multiplication of two monomials.

The results can be written in square units.

(i) p  ×q = pq

(ii)10m  × 5n = 50mn

(iii) 20x2 × 5y2 =  100x2 y2

(iv) 4x  × 3x2 = 12x3

(v) 3mn  × 4np = 12mn2 p

3. Complete the following table of products:

ncert solution for class 8 maths chapter 09 fig 1

Solution:

ncert solutions for class 8 maths chapter 09 fig 2

4. Obtain the volume of rectangular boxes with the following length, breadth and height, respectively.

(i) 5a, 3a2 , 7a 4

(ii)2p, 4q, 8r

(iii) xy, 2x2 y, 2xy 2

(iv)a, 2b, 3c

Solution:

Volume of rectangle = length x  breadth x  height. To evaluate volume of rectangular boxes, multiply all the monomials.

(i) 5a x 3a 2 x 7a 4 = (5 × 3 × 7) (a × a 2 × a 4 ) = 105a7

(ii) 2p x 4q x 8r = (2 × 4 × 8 ) (p × q × r ) = 64pqr

(iii) y ×  2x2 y × 2xy 2 =(1 × 2 × 2 )( x × x2 × x × y × y × y 2 ) =   4x4 y4

(iv) a x2b x3c = (1 × 2 × 3 ) (a × b × c) = 6abc

5. Obtain the product of

(i) xy,  yz, zx

(ii) a, – a2 , a3

(iii) 2, 4y, 8y2 , 16y3

(iv) a, 2b, 3c, 6abc

(v) m, – mn, mnp

Solution:

(i) xy × yz × zx = x2 y 2 z 2

(ii) a × – a2 × a3 = – a6

(iii) 2 × 4y × 8y2 × 16y3 = 1024 y6

(iv) a × 2b × 3c × 6abc = 36a2 b2 c2

(v) m × – mn × mnp = –m3 n2 p

Exercise 9.3 Page No: 146

1. Carry out the multiplication of the expressions in each of the following pairs.

(i) 4p, q + r

(ii) ab, a – b

(iii) a + b, 7a²b²

(iv) a2 – 9, 4a

(v) pq + qr + rp, 0

Solution :

(i)4p(q + r) = 4pq + 4pr

(ii)ab(a – b) = a2 b – a b2

(iii)(a + b) (7a2 b2 ) = 7a3 b2 + 7a2 b3

(iv) (a2 – 9)(4a) = 4a3 – 36a

(v) (pq + qr + rp) × 0 = 0 ( Anything multiplied by zero is zero )

2. Complete the table.

ncert solutions for class 8 maths chapter 09 fig 3

Solution:

First expression Second expression Product
(i) a b + c + d a(b+c+d)

= a×b + a×c + a×d

= ab + ac + ad

(ii) x + y – 5 5xy 5 xy (x + y – 5)

= 5 xy x x + 5 xy x y – 5 xy x 5

= 5 x2 y + 5 xy2 – 25xy

(iii) p 6p2 – 7p + 5 p (6 p 2 -7 p +5)

= p× 6 p2 – p× 7 p + p×5

= 6 p3 – 7 p2 + 5 p

(iv) 4 p2 q2 P2 – q2 4p2 q2 * (p2 – q2 )

=4 p4 q2 – 4p2 q4

(v) a + b + c abc abc(a + b + c)

= abc × a + abc × b + abc × c

= a2 bc + ab2 c + abc2

3. Find the product.

i) a2 x (2a22 ) x (4a26 )

ii) (2/3 xy) ×(-9/10 x2 y2 )

(iii) (-10/3 pq3 /) × (6/5 p3 q)

(iv) (x) × (x2 ) × (x3 ) × (x4 )

Solution:

i) a2 x (2a22 ) x (4a26 )

= (2 × 4) ( a2 × a22 × a26 )

= 8 × a2 + 22 + 26 

= 8a50

ii) (2xy/3) ×(-9x2 y2 /10)

=(2/3 × -9/10 ) ( x × x2 × y × y2 )

= (-3/5 x3 y3 )

iii) (-10pq3 /3) ×(6p3 q/5)

= ( -10/3 × 6/5 ) (p × p3 × q3 × q)

= (-4p4 q4 )

iv)  ( x) x (x2 ) x (x3 ) x (x4 )

= x1 + 2 + 3 + 4 

=  x10

4. (a) Simplify 3x (4x – 5) + 3 and find its values for (i) x = 3 (ii) x =1/2

(b) Simplify  a (a2 + a + 1) + 5 and find its value for (i) a = 0 , (ii) a = 1 (iii) a = – 1 .

Solution:

a) 3x (4x – 5) + 3

=3x ( 4x) – 3x( 5) +3

=12x2 – 15x + 3

(i) Putting x=3 in the equation we gets 12x2 – 15x + 3 =12(32 ) – 15 (3) +3

= 108 – 45 + 3

= 66

(ii) Putting x=1/2 in the equation we get

12x2 – 15x + 3 = 12 (1/2)2 – 15 (1/2) + 3

= 12 (1/4) – 15/2 +3

= 3 – 15/2 + 3

= 6- 15/2

= (12- 15 ) /2

= -3/2

b) a(a2 +a +1)+5

= a x a2 + a x a + a x 1 + 5 =a3 +a2 +a+ 5

(i) putting a=0 in the equation we get 03 +02 +0+5=5

(ii) putting a=1 in the equation we get 13  + 12  + 1+5 = 1 + 1 + 1+5 = 8

(iii) Putting a = -1 in the equation we get (-1)3 +(-1)2  + (-1)+5 = -1 + 1 – 1+5 = 4

5. (a) Add: p ( p – q), q ( q – r) and r ( r – p)

(b) Add: 2x (z – x – y) and 2y (z – y – x)

(c) Subtract: 3l (l – 4 m + 5 n) from 4l ( 10 n – 3 m + 2 l )

(d) Subtract: 3a (a + b + c ) – 2 b (a – b + c) from 4c ( – a + b + c )

Solution:

a) p ( p – q) + q ( q – r) + r ( r – p)

= (p2 – pq) + (q2 – qr) + (r2 – pr)

= p2 + q2 + r2 – pq – qr – pr

b) 2x (z – x – y) + 2y (z – y – x)

= (2xz – 2x2 – 2xy) + (2yz – 2y2 – 2xy)

= 2xz – 4xy + 2yz – 2x2 – 2y2

c) 4l ( 10 n – 3 m + 2 l ) – 3l (l – 4 m + 5 n)

= (40ln – 12lm + 8l2 ) – (3l2 – 12lm + 15ln)

= 40ln – 12lm + 8l2 – 3l2 +12lm -15 ln

= 25 ln + 5l2

d) 4c ( – a + b + c ) – (3a (a + b + c ) – 2 b (a – b + c))

= (-4ac + 4bc + 4c2 ) – (3a2 + 3ab + 3ac – ( 2ab – 2b2 + 2bc ))

=-4ac + 4bc + 4c2 – (3a2 + 3ab + 3ac – 2ab + 2b2 – 2bc)

= -4ac + 4bc + 4c2 – 3a2 – 3ab – 3ac +2ab – 2b2 + 2bc

= -7ac + 6bc + 4c2 – 3a2 – ab – 2b2

Exercise 9.4 Page No: 148

1. Multiply the binomials.

(i) (2x + 5) and (4x – 3)

(ii) (y – 8) and (3y – 4)

(iii) (2.5l – 0.5m) and (2.5l + 0.5m)

(iv) (a + 3b) and (x + 5)

(v) (2pq + 3q2 ) and (3pq – 2q2 )

(vi) (3/4 a2 + 3b2 ) and 4( a2 – 2/3 b2 )

Solution :

(i) (2x + 5)(4x – 3)

= 2x x 4x – 2x x 3 + 5 x 4x – 5 x 3

= 8x² – 6x + 20x -15

= 8x² + 14x -15

ii) ( y – 8)(3y – 4)

= y x 3y – 4y – 8 x 3y + 32

= 3y2 – 4y – 24y + 32

= 3y2 – 28y + 32

(iii) ( 2.5l– 0.5m)(2.5l + 0.5m)

= 2.5l x 2.5 l + 2.5l x 0.5m – 0.5m x 2.5l – 0.5m x 0.5m

= 6.25l2 + 1.25 lm – 1.25 lm – 0.25 m 2

= 6.25l2 – 0.25 m 2

iv) (a + 3b) (x + 5)

= ax + 5a + 3bx + 15b

v) (2pq + 3q2 )  (3pq – 2q2 )

= 2pq x 3pq – 2pq x 2q2 + 3q2 x 3pq – 3q2 x 2q2

= 6p2 q2 – 4pq3 + 9pq3 – 6q4

= 6p2 q2 + 5pq3 – 6q4

(vi) (3/4 a² + 3b² ) and 4( a² – 2/3 b² )

=(3/4 a² + 3b² ) x 4( a² – 2/3 b² )

=(3/4 a² + 3b² ) x (4a² – 8/3 b² )

=3/4 a² x (4a² – 8/3 b² ) + 3b² x (4a² – 8/3 b² )

=3/4 a² x 4a² -3/4 a² x 8/3 b² + 3b² x 4a² – 3b²  x 8/3 b²

=3a4 – 2a² b² + 12 a² b² – 8b 4

= 3a4 + 10a² b² – 8b4

2. Find the product.

(i) (5 – 2x) (3 + x)

(ii) (x + 7y) (7x – y)

(iii) (a2 + b) (a + b2 )

(iv) (p2 – q2 ) (2p + q)

Solution:

(i) (5 – 2x) (3 + x)

= 5 (3 + x) – 2x (3 + x)

=15 + 5x – 6x – 2x2

= 15 – x -2 x 2

(ii) (x + 7y) (7x – y)

= x(7x-y) + 7y ( 7x-y)

=7x2 – xy + 49xy – 7y2

= 7x2 – 7y2 + 48xy

iii) (a2 + b) (a + b2 )

= a2 (a + b2 ) + b(a + b2 )

= a3 + a2 b2 + ab + b3

= a3 + b3 + a2 b2 + ab

iv) (p2 – q2 ) (2p + q)

= p2 (2p + q) – q2 (2p + q)

=2p3 + p2 q – 2pq2 – q3

= 2p3 – q3 + p2 q – 2pq2

3. Simplify.

(i) (x2 – 5) (x + 5) + 25

(ii) (a2 + 5) (b3 + 3) + 5

(iii)(t + s2 )(t2 – s)

(iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

(v) (x + y)(2x + y) + (x + 2y)(x – y)

(vi) (x + y)(x2 – xy + y2 )

(vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y

(viii) (a + b + c)(a + b – c)

Solution:

i) (x2 – 5) (x + 5) + 25

= x3 + 5x2 – 5x – 25 + 25

= x3 + 5x2 – 5x

ii) (a2 + 5) (b3 + 3) + 5

= a2 b3 + 3a2 + 5b3 + 15 + 5

= a2 b3 + 5b3 + 3a2 + 20

iii) (t + s2 )(t2 – s)

= t (t2 – s)+ s2 (t2 – s)

= t3 – st + s2 t2 – s3

= t3 – s3 – st + s2 t2

iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

= (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

=(ac – ad + bc – bd) + (ac + ad – bc – bd) + (2ac + 2bd)

= ac – ad + bc – bd + ac + ad – bc – bd + 2ac + 2bd

= 4ac

v) (x + y)(2x + y) + (x + 2y)(x – y)

= 2x2 + xy + 2xy + y2 + x2 – xy + 2xy – 2y2

= 3x2 + 4xy – y2

vi) (x + y)(x2 – xy + y2 )

= x3 – x2 y + xy2 + x2 y – xy2 + y3

= x3 + y3

vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y

= 2.25x2 + 6xy + 4.5x – 6xy – 16y2 – 12y – 4.5x + 12y = 2.25x2 – 16y2

viii) (a + b + c)(a + b – c)

= a2 + ab – ac + ab + b2 – bc + ac + bc – c2

= a2 + b2 – c2 + 2ab

Exercise 9.5 Page No: 151

1. Use a suitable identity to get each of the following products.

(i) (x + 3) (x + 3)

(ii) (2y + 5) (2y + 5)

(iii) (2a – 7) (2a – 7)

(iv) (3a – 1/2)(3a – 1/2)

(v) (1.1m – 0.4) (1.1m + 0.4)

(vi) (a2 + b2 ) (- a2 + b2 )

(vii) (6x – 7) (6x + 7)

(viii) (- a + c) (- a + c)

(ix) (1/2x + 3/4y) (1/2x + 3/4y)

(x) (7a – 9b) (7a – 9b)

Solution:

(i) (x + 3) (x + 3) = (x + 3)2

= x2 + 6x + 9

Using (a+b)2 = a2 + b2 + 2ab

ii) (2y + 5) (2y + 5) = (2y + 5)2

= 4y2 + 20y + 25

Using (a+b)2 = a2 + b2 + 2ab

iii) (2a – 7) (2a – 7) = (2a – 7)2

= 4a2 – 28a + 49

Using (a-b)2  = a2 + b2 – 2ab

iv) (3a – 1/2)(3a – 1/2) = (3a – 1/2)2

=  9a2 -3a+(1/4)

Using (a-b)2   = a2 + b2 – 2ab

v)   (1.1m – 0.4) (1.1m + 0.4)

= 1.21m2 – 0.16

Using (a – b)(a + b) = a2 – b2

vi) (a2 + b2 ) (– a2 + b2 )

= (b2 + a2 ) (b2 – a2 )

= -a4 + b4

Using (a – b)(a + b) = a2 – b2

vii) (6x – 7) (6x + 7)

=36x2 – 49

Using (a – b)(a + b) = a2 – b2

viii) (– a + c) (– a + c) = (– a + c)2

= c2 + a2 – 2ac

Using (a-b)2 = a2 + b2 – 2ab

ncert solution for class 8 maths chapter 09 fig 7

= (x2 /4) + (9y2 /16) + (3xy/4)

Using (a+b)2 = a2 + b2 + 2ab

x) (7a – 9b) (7a – 9b) = (7a – 9b)2

= 49a2 – 126ab + 81b2

Using (a-b)2 = a2 + b2 – 2ab

2. Use the identity (x + a) (x + b) = x2  + (a + b) x + ab to find the following products.

(i) (x + 3) (x + 7)

(ii) (4x + 5) (4x + 1)

(iii) (4x – 5) (4x – 1)

(iv) (4x + 5) (4x – 1)

(v) (2x + 5y) (2x + 3y)

(vi) (2a2 + 9) (2a2 + 5)

(vii) (xyz – 4) (xyz – 2)

Solution:

(i)(x + 3) (x + 7)

= x2 + (3+7)x + 21

= x2 + 10x + 21

ii) (4x + 5) (4x + 1)

= 16x2 + 4x + 20x + 5

= 16x2 + 24x + 5

iii) (4x – 5) (4x – 1)

= 16x2 – 4x – 20x + 5

= 16x2 – 24x + 5

iv) (4x + 5) (4x – 1)

= 16x2 + (5-1)4x – 5

= 16x2 +16x – 5

v) (2x + 5y) (2x + 3y)

= 4x2 + (5y + 3y)2x + 15y2

= 4x2 + 16xy + 15y2

vi) (2a2 + 9) (2a2 + 5)

= 4a4 + (9+5)2a2 + 45

= 4a4 + 28a2 + 45

vii) (xyz – 4) (xyz – 2)

= x2 y2 z2 + (-4 -2)xyz + 8

= x2 y2 z2 – 6xyz + 8

3. Find the following squares by using the identities.

(i) (b – 7)2

(ii) (xy + 3z)2

(iii) (6x2 – 5y)2

(iv) [(2m/3) + (3n/2)]2

(v) (0.4p – 0.5q)2

(vi) (2xy + 5y)2

Solution:

Using identities:

(a – b)2 = a2 + b2 – 2ab (a + b)2 = a2 + b2 + 2ab

(i) (b – 7)2 = b2 – 14b + 49

(ii) (xy + 3z)2 = x2 y2 + 6xyz + 9z2

(iii) (6x2 – 5y)2 = 36x4 – 60x2 y + 25y2

(iv) [(2m/3}) + (3n/2)]2 = (4m2 /9) +(9n2 /4) + 2mn

(v) (0.4p – 0.5q)2 = 0.16p2 – 0.4pq + 0.25q2

(vi) (2xy + 5y)2 = 4x2 y2 + 20xy2 + 25y2

4. Simplify.

(i) (a2 – b2 )2

(ii) (2x + 5)2  – (2x – 5)2

(iii) (7m – 8n)2 + (7m + 8n)2

(iv) (4m + 5n)2  + (5m + 4n)2

(v) (2.5p – 1.5q)2  – (1.5p – 2.5q)2

(vi) (ab + bc)2 – 2ab²c

(vii) (m2  – n2 m)2  + 2m3 n2

Solution:

i) (a2 – b2 )2 = a4 + b4 – 2a2 b2

ii) (2x + 5)2  – (2x – 5)2
= 4x2 + 20x + 25 – (4x2 – 20x + 25) = 4x2 + 20x + 25 – 4x2 + 20x – 25 = 40x

iii) (7m – 8n)2 + (7m + 8n)2
= 49m2 – 112mn + 64n2 + 49m2 + 112mn + 64n2
= 98m2 + 128n2

iv) (4m + 5n)2  + (5m + 4n)2
= 16m2 + 40mn + 25n2 + 25m2 + 40mn + 16n2
= 41m2 + 80mn + 41n2

v) (2.5p – 1.5q)2  – (1.5p – 2.5q)2
= 6.25p2 – 7.5pq + 2.25q2 – 2.25p2 + 7.5pq – 6.25q2
= 4p2 – 4q2

vi) (ab + bc)2 – 2ab²c = a2 b2 + 2ab2 c + b2 c2 – 2ab2 c = a2 b2 + b2 c2

vii) (m2  – n2 m)2  + 2m3 n2
= m4 – 2m3 n2 + m2 n4 + 2m3 n2
= m4 + m2 n4

5. Show that.

(i) (3x + 7)2  – 84x = (3x – 7)2

(ii) (9p – 5q)2 + 180pq = (9p + 5q)2

(iii) (4/3m – 3/4n)2 + 2mn = 16/9 m2 + 9/16 n2

(iv) (4pq + 3q)2 – (4pq – 3q)2  = 48pq2

(v) (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a) = 0

Solution:

i) LHS = (3x + 7)2  – 84x

= 9x2 + 42x + 49 – 84x
= 9x2 – 42x + 49
= RHS

LHS = RHS

ii)  LHS = (9p – 5q)2 + 180pq
= 81p2 – 90pq + 25q2 + 180pq
= 81p2 + 90pq + 25q2
RHS = (9p + 5q)2
= 81p2 + 90pq + 25q2
LHS = RHS

ncert solution for class 8 maths chapter 09 fig 8

LHS = RHS

iv)  LHS = (4pq + 3q)2 – (4pq – 3q)2

= 16p2 q2 + 24pq2 + 9q2 – 16p2 q2 + 24pq2 – 9q2

= 48pq2

= RHS

LHS = RHS

v) LHS = (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a)

= a2 – b2 + b2 – c2 + c2 – a2

= 0

= RHS

6. Using identities, evaluate.

(i) 71²

(ii) 99²

(iii) 1022

(iv) 998²

(v) 5.2²

(vi) 297 x 303

(vii) 78 x 82

(viii) 8.92

(ix) 10.5 x 9.5

Solution:

i) 712

= (70+1)2

= 702 + 140 + 12

= 4900 + 140 +1

= 5041

ii) 99²

= (100 -1)2

= 1002 – 200 + 12

= 10000 – 200 + 1

= 9801

iii) 1022

= (100 + 2)2

= 1002 + 400 + 22

= 10000 + 400 + 4 = 10404

iv) 9982

= (1000 – 2)2

= 10002 – 4000 + 22

= 1000000 – 4000 + 4

= 996004

v) 5.22

= (5 + 0.2)2

= 52 + 2 + 0.22

= 25 + 2 + 0.04 = 27.04

vi) 297 x 303

= (300 – 3 )(300 + 3)

= 3002 – 32

= 90000 – 9

= 89991

vii) 78 x 82

= (80 – 2)(80 + 2)

= 802 – 22

= 6400 – 4

= 6396

viii) 8.92

= (9 – 0.1)2

= 92 – 1.8 + 0.12

= 81 – 1.8 + 0.01

= 79.21

ix) 10.5 x 9.5

= (10 + 0.5)(10 – 0.5)

= 102 – 0.52

= 100 – 0.25

= 99.75

7. Using a2 – b2 = (a + b) (a – b), find

(i) 512 – 492

(ii) (1.02)2 – (0.98)2

(iii) 1532 – 1472

(iv) 12.12 – 7.92

Solution:

i) 512 – 492

= (51 + 49)(51 – 49) = 100 x 2 = 200

ii) (1.02)2 – (0.98)2

= (1.02 + 0.98)(1.02 – 0.98) = 2 x 0.04 = 0.08

iii) 1532 – 1472

= (153 + 147)(153 – 147) = 300 x 6 = 1800

iv) 12.12 – 7.92

= (12.1 + 7.9)(12.1 – 7.9) = 20 x 4.2= 84

8. Using (x + a) (x + b) = x2 + (a + b) x + ab, find

(i) 103 x 104

(ii) 5.1 x 5.2

(iii) 103 x 98

(iv) 9.7 x 9.8

Solution:

i) 103 x 104

= (100 + 3)(100 + 4)

= 1002 + (3 + 4)100 + 12

= 10000 + 700 + 12

= 10712

ii) 5.1 x 5.2

= (5 + 0.1)(5 + 0.2)

= 52 + (0.1 + 0.2)5 + 0.1 x 0.2

= 25 + 1.5 + 0.02

= 26.52

iii) 103 x 98

= (100 + 3)(100 – 2)

= 1002 + (3-2)100 – 6

= 10000 + 100 – 6

= 10094

iv) 9.7 x 9.8

= (9 + 0.7 )(9 + 0.8)

= 92 + (0.7 + 0.8)9 + 0.56

= 81 + 13.5 + 0.56

= 95.06

NCERT Solutions for Class 8 Maths Chapter 9 is mainly about the study of solving polynomial-related problems. The chapter builds a strong foundation for the students to deal with higher grade Maths problems.

Students can utilise the NCERT Solutions for Class 8 Maths Chapter 9 for any quick references to comprehend and solve complex problems.

Key Features of NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities

  1. NCERT Solutions provides fully resolved step-by-step solutions to all textbook questions.
  2. Set of solutions contain a list of all important formulas on algebraic identities.
  3. These solutions are designed based on the latest syllabus.
  4. Solutions are prepared by subject experts.
  5. NCERT Solutions are also helpful for the preparation of competitive exams.
Home Revise
Reach Us

7th floor,Odyssey IT Park, Road Number- 9, Near Old Passport Office, Wagale Estate,
Thane (W) – 400604

Contact Us

telephone +91 80809 72972

mail customercare@homerevise.co.in

CBSE Board
  • 12 CBSE Board
  • 11 CBSE Board
  • 10 CBSE Board
  • 09 CBSE Board
  • 08 CBSE Board
  • 07 CBSE Board
  • 06 CBSE Board
  • 05 CBSE Board
  • 04 CBSE Board
  • 03 CBSE Board
  • 02 CBSE Board
  • 01 CBSE Board
ICSE Board
  • 10 ICSE Board
  • 09 ICSE Board
Maharashtra Board
Science
  • 12 Science Maharashtra Board
  • 11 Science Maharashtra Board
Commerce
  • 12 Commerce Maharashtra Board
  • 11 Commerce Maharashtra Board
  • 10 Maharashtra Board
  • 09 Maharashtra Board
  • 08 Maharashtra Board
  • 07 Maharashtra Board
  • 06 Maharashtra Board
  • 05 Maharashtra Board
  • 04 Maharashtra Board
  • 03 Maharashtra Board
  • 02 Maharashtra Board
  • 01 Maharashtra Board
Submit Form
  • Home Revise
  • twitter
  • youtube
  • instagram
© 2021 – All Rights Reserved. Home Revise